login
A020984
Expansion of 1/((1-9*x)*(1-11*x)*(1-12*x)).
1
1, 32, 685, 12260, 198121, 2997512, 43322245, 605523020, 8251539841, 110243798192, 1449890883805, 18826690025780, 241910703467161, 3081364962170072, 38962058064701365, 489593051613776540, 6119501542765132081, 76138929852279201152, 943571277592721190925
OFFSET
0,2
FORMULA
a(n) = 32*a(n-1) - 339*a(n-2) + 1188*a(n-3), n >= 3. - Vincenzo Librandi, Mar 18 2011
a(n) = 23*a(n-1) - 132*a(n-2) + 9^n, n >= 2. - Vincenzo Librandi, Mar 18 2011
a(n) = 4*12^(n+1) - 11^(n+2)/2+3*9^(n+1)/2. - R. J. Mathar, Mar 19 2011
MATHEMATICA
CoefficientList[Series[1/((1-9*x)*(1-11*x)*(1-12*x)), {x, 0, 50}], x] (* G. C. Greubel, Feb 09 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(1/((1-9*x)*(1-11*x)*(1-12*x))) \\ G. C. Greubel, Feb 09 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-9*x)*(1-11*x)*(1-12*x)))); // G. C. Greubel, Feb 09 2018
CROSSREFS
Sequence in context: A240362 A025031 A025008 * A247997 A199708 A264093
KEYWORD
nonn
EXTENSIONS
a(18) corrected by Andrew Howroyd, Feb 23 2018
STATUS
approved