login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020983 Expansion of 1/((1-9*x)*(1-10*x)*(1-12*x)). 1
1, 31, 643, 11155, 174811, 2566291, 36012523, 489103555, 6481822171, 84295081651, 1080159920203, 13679489505955, 171612008243131, 2136467306462611, 26431716545456683, 325327578356628355, 3987253758579873691, 48696950467661485171, 593012553894264829963 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..920

Index entries for linear recurrences with constant coefficients, signature (31,-318,1080)

FORMULA

a(n) = 31*a(n-1) - 318*a(n-2) + 1080*a(n-3), n >= 3. - Vincenzo Librandi, Mar 18 2011

a(n) = 22*a(n-1) - 120*a(n-2) + 9^n, n >= 2. - Vincenzo Librandi, Mar 18 2011

a(n) = -5*10^(n+1) + 3*9^(n+1) + 2*12^(n+1). - R. J. Mathar, Mar 20 2011

MATHEMATICA

CoefficientList[Series[1/((1-9*x)*(1-10*x)*(1-12*x)), {x, 0, 50}], x] (* G. C. Greubel, Feb 09 2018 *)

LinearRecurrence[{31, -318, 1080}, {1, 31, 643}, 20] (* Robert G. Wilson v, Feb 11 2018 *)

PROG

(PARI) x='x+O('x^30); Vec(1/((1-9*x)*(1-10*x)*(1-12*x))) \\ G. C. Greubel, Feb 09 2018

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-9*x)*(1-10*x)*(1-12*x)))); // G. C. Greubel, Feb 09 2018

CROSSREFS

Sequence in context: A028004 A025007 A024446 * A020981 A006097 A000565

Adjacent sequences:  A020980 A020981 A020982 * A020984 A020985 A020986

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)