This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020983 Expansion of 1/((1-9*x)*(1-10*x)*(1-12*x)). 1
 1, 31, 643, 11155, 174811, 2566291, 36012523, 489103555, 6481822171, 84295081651, 1080159920203, 13679489505955, 171612008243131, 2136467306462611, 26431716545456683, 325327578356628355, 3987253758579873691, 48696950467661485171, 593012553894264829963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..920 Index entries for linear recurrences with constant coefficients, signature (31,-318,1080) FORMULA a(n) = 31*a(n-1) - 318*a(n-2) + 1080*a(n-3), n >= 3. - Vincenzo Librandi, Mar 18 2011 a(n) = 22*a(n-1) - 120*a(n-2) + 9^n, n >= 2. - Vincenzo Librandi, Mar 18 2011 a(n) = -5*10^(n+1) + 3*9^(n+1) + 2*12^(n+1). - R. J. Mathar, Mar 20 2011 MATHEMATICA CoefficientList[Series[1/((1-9*x)*(1-10*x)*(1-12*x)), {x, 0, 50}], x] (* G. C. Greubel, Feb 09 2018 *) LinearRecurrence[{31, -318, 1080}, {1, 31, 643}, 20] (* Robert G. Wilson v, Feb 11 2018 *) PROG (PARI) x='x+O('x^30); Vec(1/((1-9*x)*(1-10*x)*(1-12*x))) \\ G. C. Greubel, Feb 09 2018 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-9*x)*(1-10*x)*(1-12*x)))); // G. C. Greubel, Feb 09 2018 CROSSREFS Sequence in context: A028004 A025007 A024446 * A020981 A006097 A000565 Adjacent sequences:  A020980 A020981 A020982 * A020984 A020985 A020986 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)