%I #21 Sep 08 2022 08:44:45
%S 1,28,527,8330,119361,1607088,20736787,259516390,3174562421,
%T 38159361548,452427201447,5305418786850,61660643651881,
%U 711374339146408,8156868543440507,93047809667655710,1056781696172883741
%N Expansion of 1/((1-7*x)*(1-10*x)*(1-11*x)).
%H G. C. Greubel, <a href="/A020973/b020973.txt">Table of n, a(n) for n = 0..955</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (28,-257,770).
%F a(n) = 28*a(n-1) - 257*a(n-2) + 770*a(n-3) for n>=3. - _Vincenzo Librandi_, Mar 15 2011
%F a(n) = 21*a(n-1) - 110*a(n-2) + 7^n for n>1, a(0)=1, a(1)=28. - _Vincenzo Librandi_, Mar 15 2011
%F a(n) = (3*11^(n+2) - 4*10^(n+2) + 7^(n+2))/12. - _Yahia Kahloune_, Jun 30 2013
%t CoefficientList[Series[1/((1-7x)(1-10x)(1-11x)), {x,0,50}], x] (* _G. C. Greubel_, May 31 2018 *)
%o (PARI) x='x+O('x^30); Vec(1/((1-7*x)*(1-10*x)*(1-11*x))) \\ _G. C. Greubel_, May 31 2018
%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-7*x)*(1-10*x)*(1-11*x)))); // _G. C. Greubel_, May 31 2018
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_