%I #16 Jan 17 2022 13:29:01
%S 1,29,571,9521,144907,2083865,28847827,388709777,5134091323,
%T 66784487561,858403625443,10928093824193,138039056180299,
%U 1732402968047417,21624191213455219,268679676312195569
%N Expansion of 1/((1-6x)(1-11x)(1-12x)).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (29,-270,792).
%F a(n) = 23*a(n-1) - 132*a(n-2) + 6^n; a(0)=1, a(1)=29. - _Vincenzo Librandi_, Mar 11 2011
%F a(n) = 6*6^n/5 - 121*11^n/5 + 24*12^n. - _R. J. Mathar_, Jul 01 2013
%F a(n) = 29*a(n-1) - 270*a(n-2) + 792*a(n-3); a(0)=1, a(1)=29, a(2)=571. - _Harvey P. Dale_, Jun 13 2015
%t CoefficientList[Series[1/((1-6x)(1-11x)(1-12x)),{x,0,20}],x] (* or *) LinearRecurrence[{29,-270,792},{1,29,571},20] (* _Harvey P. Dale_, Jun 13 2015 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_