The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020746 Pisot sequence T(3,7), a(n) = floor(a(n-1)^2/a(n-2)). 3
 3, 7, 16, 36, 81, 182, 408, 914, 2047, 4584, 10265, 22986, 51471, 115255, 258081, 577899, 1294040, 2897633, 6488421, 14528964, 32533461, 72849384, 163125366, 365272615, 817923579, 1831505986, 4101133972, 9183316890, 20563412382, 46045882316, 103106587509 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. W. Boyd, Pisot sequences which satisfy no linear recurrences, Acta Arith. 32 (1) (1977) 89-98 D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305 D. W. Boyd, On linear recurrence relations satisfied by Pisot sequences, Acta Arithm. 47 (1) (1986) 13 D. W. Boyd, Pisot sequences which satisfy no linear recurrences. II, Acta Arithm. 48 (1987) 191 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, in Advances in Number Theory (Kingston ON, 1991), pp. 333-340, Oxford Univ. Press, New York, 1993; with updates from 1996 and 1999. D. G. Cantor, On families of Pisot E-sequences, Ann. Sci. Ecole Nat. Sup. 9 (2) (1976) 283-308 FORMULA Conjectured g.f.: (-x^5+x^4-x^3+x^2-2*x+3)/((1-x)*(1-2*x-x^3-x^5)). - Ralf Stephan, May 12 2004 I believe that David Boyd has proved that this g.f. is correct. - N. J. A. Sloane, Aug 11 2016 MATHEMATICA RecurrenceTable[{a[0] == 3, a[1] == 7, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *) PROG (MAGMA) Iv:=[3, 7]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016 (PARI) pisotT(nmax, a1, a2) = {   a=vector(nmax); a[1]=a1; a[2]=a2;   for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));   a } pisotT(50, 3, 7) \\ Colin Barker, Jul 29 2016 CROSSREFS See A008776 for definitions of Pisot sequences. Cf. A010919, A010925. Sequence in context: A019489 A077852 A218983 * A033303 A078056 A173761 Adjacent sequences:  A020743 A020744 A020745 * A020747 A020748 A020749 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 01:54 EST 2020. Contains 331328 sequences. (Running on oeis4.)