%I #19 Apr 24 2017 18:02:16
%S 6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,
%T 52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,
%U 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138
%N 2n + 6.
%C Pisot sequence T(6,8).
%C Trivial case of a Pisot sequence satisfying a simple linear recurrence. Here, since round((2n+2)^2/(2n)^2) = 2n + round((n+1)/n^2) = 2n for n>2, a(n) is even and a(n) = a(n-1) + 2. - _Ralf Stephan_, Sep 03 2013
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1).
%F a(n) = 2a(n-1) - a(n-2).
%t 2*Range[0,70]+6 (* or *) Range[6,138,2] (* _Harvey P. Dale_, Apr 24 2017 *)
%Y Subsequence of A005843. See A008776 for definitions of Pisot sequences.
%K nonn,easy
%O 0,1
%A _David W. Wilson_
%E Better name from _Ralf Stephan_, Sep 03 2013