login
Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,3,5,7,...
10

%I #24 Jan 28 2019 19:19:45

%S 1,4,3,2,9,8,7,6,5,16,15,14,13,12,11,10,25,24,23,22,21,20,19,18,17,36,

%T 35,34,33,32,31,30,29,28,27,26,49,48,47,46,45,44,43,42,41,40,39,38,37,

%U 64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,81,80,79,78,77

%N Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,3,5,7,...

%C Arrange A000027, the natural numbers, into a (square) spiral, say clockwise as shown in A068225. Read the numbers from the resulting counterclockwise spiral of the same shape that also begins with 1 and this sequence results. - _Rick L. Shepherd_, Aug 04 2006

%C Contribution from _Hieronymus Fischer_, Apr 30 2012: (Start)

%C The sequence may also be defined as follows: a(1)=1, a(n)=m^2 (where m^2 is the least square > a(k) for 1<=k<n), if the minimal natural number not yet in the sequence is greater than a(n-1), else a(n)=a(n-1)-1.

%C A reordering of the natural numbers.

%C The sequence is self-inverse in that a(a(n))=n.

%C (End)

%D R. Honsberger, "Ingenuity in Mathematics", Table 10.4 on page 87.

%D Suggested by correspondence with Michael Somos.

%H Hieronymus Fischer, <a href="/A020703/b020703.txt">Table of n, a(n) for n = 1..11131</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F Contribution from _Hieronymus Fischer_, Apr 30 2012: (Start)

%F a(n)=a(n-1)-1, if a(n-1)-1 > 0 is not in the set {a(k)| 1<=k<n}, else a(n)=m^2, where m^2 is the least square not yet in the sequence.

%F a(n)=n for n=k(k+1)+1, k>=0.

%F a(n+1)=(sqrt(a(n)-1)+2)^2, if a(n)-1 is a square, a(n+1)=a(n)-1, else.

%F a(n)=2*(floor(sqrt(n-1))+1)*floor(sqrt(n-1))-n+2. (End)

%e a(2)=4=2^2, since 2^2 is the least square >2=a(1) and the minimal number not yet in the sequence is 2>1=a(1);

%e a(8)=6=a(7)-1, since the minimal number not yet in the sequence (=5) is <=7=a(7).

%t Flatten[Table[Range[n^2,(n-1)^2+1,-1],{n,10}]] (* _Harvey P. Dale_, Jan 10 2016 *)

%t With[{nn=20},Flatten[Reverse/@TakeList[Range[nn^2],Range[1,nn,2]]]] (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Jan 28 2019 *)

%o (PARI) a(n)=local(t); if(n<1,0,t=sqrtint(n-1); 2*(t^2+t+1)-n)

%Y A self-inverse permutation of the natural numbers.

%Y Cf. A000027, A038722.

%Y Cf. A132666, A132664, A132665, A132674.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, May 02 2000