login
13th cyclotomic polynomial evaluated at powers of 2.
0

%I #13 Jul 15 2016 11:27:57

%S 13,8191,22369621,78536544841,300239975158033,1190112520884487201,

%T 4797324681010433232961,19495118728903626376364161,

%U 79538861190790864407636279553,325153619321163373997995856232961,1330527338889299954891005307651097601

%N 13th cyclotomic polynomial evaluated at powers of 2.

%H Quynh Nguyen, Jean Pedersen, and Hien T. Vu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Pedersen/pedersen2.html">New Integer Sequences Arising From 3-Period Folding Numbers</a>, Vol. 19 (2016), Article 16.3.1. Cites this sequence.

%F a(n) = A060887(A000079(n)). - _Michel Marcus_, Apr 06 2016

%F G.f.: Sum_{k=0..12} 1/(1-2^k*x). - _Benedict W. J. Irwin_, Jul 15 2016

%p with(numtheory,cyclotomic):seq(cyclotomic(13,2^i),i=0..24);

%t Table[Cyclotomic[13,2^n],{n,0,24}] (* _Benedict W. J. Irwin_, Jul 15 2016 *)

%o (PARI) a(n) = polcyclo(13, 2^n); \\ _Michel Marcus_, Apr 06 2016

%Y Cf. A000079, A060887.

%K nonn

%O 0,1

%A _Simon Plouffe_