The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020513 Cyclotomic polynomials evaluated at x=-1. 9
 -1, -2, 0, 1, 2, 1, 3, 1, 2, 1, 5, 1, 1, 1, 7, 1, 2, 1, 3, 1, 1, 1, 11, 1, 1, 1, 13, 1, 1, 1, 1, 1, 2, 1, 17, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 29, 1, 1, 1, 31, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 E. T. Bell, Cauchy’s cyclotomic function and functional powers, Bull. Amer. Math. Soc. 33 (1927), 416-422. Bartlomiej Bzdega, Andres Herrera-Poyatos, Pieter Moree, Cyclotomic polynomials at roots of unity, arXiv:1611.06783 [math.NT], 2016-2017. See Lemma 7. FORMULA For n >= 3: if n = 2*p^m with a prime p then a(n) = p otherwise a(n) = 1. - Ola Veshta (olaveshta(AT)my-deja.com), Jun 01 2001 MAPLE with(numtheory, cyclotomic); f := n->subs(x=-1, cyclotomic(n, x)); seq(f(i), i=0..64); MATHEMATICA Array[Cyclotomic[#, -1] &, 90, 0] (* Robert G. Wilson v, Nov 23 2016 *) PROG (PARI) a(n) = if (n==0, -1, subst(polcyclo(n), x, -1)); \\ Michel Marcus, Apr 22 2016 (PARI) a(n) = if (n==0, -1, if (n==1, -2, if (n==2, 0, if (!(n % 2) && isprimepower(n/2, &p), p, 1)))); \\ Michel Marcus, Nov 23 2016 CROSSREFS Cf. A138929 (2*p^m, m >= 0 values). Sequence in context: A077905 A131331 A268696 * A029276 A109248 A131866 Adjacent sequences:  A020510 A020511 A020512 * A020514 A020515 A020516 KEYWORD sign AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 13:00 EST 2021. Contains 349429 sequences. (Running on oeis4.)