login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020492 Balanced numbers: numbers n such that phi(n) (A000010) divides sigma(n) (A000203). 59
1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1254, 1485, 1672, 1848, 2090, 2214, 2376, 2436, 2580, 2730, 2970, 3080, 3135, 3339, 3596, 3720, 3828 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The quotient A020492(n)/A002088(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 or zeta(2)^2 [~2.705808084277845]. - Labos Elemer, Sep 20 2004, corrected by Charles R Greathouse IV, Jun 20 2012

If 2^p-1 is prime (a Mersenne prime) then m=2^(p-2)*(2^p-1) is in the sequence because when p=2 we get m=3 and phi(3) divides sigma(3) and for p>2, phi(m)=2^(p-2)*(2^(p-1)-1); sigma(m) =(2^(p-1)-1)*2^p hence sigma(m)/phi(m)=4 is an integer. So for each n, 2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence. - Farideh Firoozbakht, Nov 28 2005

phi and sigma are both multiplicative functions and for this reason if m and n are coprime and included in this sequence then m*n is also in this sequence. - Enrique Pérez Herrero, Sep 05 2010

The quotients sigma(n)/phi(n) are in A023897. - Bernard Schott, Jun 06 2017

There are 544768 balanced numbers < 10^14. - Jud McCranie, Sep 10 2017

a(975807) = 419998185095132. - Jud McCranie, Nov 28 2017

REFERENCES

D. Chiang, "N's for which phi(N) divides sigma(N)", Mathematical Buds, Chap. VI pp. 53-70 Vol. 3 Ed. H. D. Ruderman, Mu Alpha Theta 1984.

LINKS

T. D. Noe and Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

EXAMPLE

sigma(35) = 1+5+7+35 = 48, phi(35) = 24, hence 35 is a term.

MAPLE

with(numtheory);

A020492:=proc(q)

local n; for n from 1 to q do if (sigma(n) mod phi(n))=0 then print(n);

fi; od; end:

A020492(10000000); # Paolo P. Lava, Jan 31 2013

MATHEMATICA

Select[ Range[ 4000 ], IntegerQ[ DivisorSigma[ 1, # ]/EulerPhi[ # ] ]& ]

(* Second program: *)

Select[Range@ 4000, Divisible[DivisorSigma[1, #], EulerPhi@ #] &] (* Michael De Vlieger, Nov 28 2017 *)

PROG

(MAGMA) [ n: n in [1..3900] | SumOfDivisors(n) mod EulerPhi(n) eq 0 ]; // Klaus Brockhaus, Nov 09 2008

(PARI) select(n->sigma(n)%eulerphi(n)==0, vector(10^4, i, i)) \\ Charles R Greathouse IV, Jun 20 2012

(Python)

from sympy import totient, divisor_sigma

print [n for n in xrange(1, 4001) if divisor_sigma(n)%totient(n)==0] # Indranil Ghosh, Jul 06 2017

CROSSREFS

Cf. A000010, A000203, A000043, A000668, A011257, A023897, A291565, A291566, A292422.

Sequence in context: A015769 A015765 A015771 * A110590 A291174 A281110

Adjacent sequences:  A020489 A020490 A020491 * A020493 A020494 A020495

KEYWORD

nonn

AUTHOR

David W. Wilson

EXTENSIONS

More terms from Farideh Firoozbakht, Nov 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 17 22:20 EST 2017. Contains 296124 sequences.