%I
%S 4,8,9,16,45,91,145,261,781,1111,1228,1305,1729,1885,2149,2821,3991,
%T 4005,4033,4187,4912,5365,5662,5833,6601,6697,7171,8481,8911,10585,
%U 11476,12403,12673,13333,13833,15805,15841,16705,19345,19729,20591,21781,22791
%N Pseudoprimes to base 17.
%C According to _Karsten Meyer_, May 16 2006, 4, 8, 9 and 16 should be excluded, following the strict definition in Crandall and Pomerance.
%D R. Crandall and C. Pomerance, "Prime Numbers  A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0387252827 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
%D Composite numbers n such that 17^(n1) == 1 (mod n).
%H R. J. Mathar and T. D. Noe, <a href="/A020145/b020145.txt">Table of n, a(n) for n = 1..1000</a> (R. J. Mathar to 799 terms)
%H F. Richman, <a href="http://www.math.fau.edu/Richman/carm.htm">Primality testing with Fermat's little theorem</a>
%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>
%t base = 17; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n1, n] == 1, AppendTo[t, n]]]; t (* _T. D. Noe_, Feb 21 2012 *)
%Y Cf. A001567 (pseudoprimes to base 2).
%K nonn
%O 1,1
%A _David W. Wilson_
