This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020139 Pseudoprimes to base 11. 2
 10, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257, 2465, 2821, 4577, 4921, 5041, 5185, 6601, 7869, 8113, 8170, 8695, 8911, 9730, 10585, 12403, 13333, 14521, 14981, 15841, 16705, 17711, 18705, 23377, 24130, 24727, 26335, 26467 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS According to Karsten Meyer, May 16 2006, 10 should be excluded, following the strict definition in Crandall and Pomerance. Composite numbers n such that 11^(n-1) == 1 (mod n). REFERENCES R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3) J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 190, p. 57, Ellipses, Paris 2008. LINKS R. J. Mathar and T. D. Noe, Table of n, a(n) for n = 1..1000 (R. J. Mathar to 726 terms) F. Richman, Primality testing with Fermat's little theorem MATHEMATICA base = 11; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *) CROSSREFS Cf. A001567 (pseudoprimes to base 2). Sequence in context: A047189 A278921 A035407 * A056522 A056511 A166626 Adjacent sequences:  A020136 A020137 A020138 * A020140 A020141 A020142 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 19:01 EST 2018. Contains 318049 sequences. (Running on oeis4.)