This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020136 Fermat pseudoprimes to base 4. 13
 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If q and 2q-1 are odd primes, then n=q*(2q-1) is in the sequence. So for n>1, A005382(n)*(2*A005382(n)-1) form a subsequence (cf. A129521). - Farideh Firoozbakht, Sep 12 2006 Primes q and 2q-1 are a Cunningham chain of the second kind. - Walter Nissen, Sep 07 2009 Composite numbers n such that 4^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Chris Caldwell, Cunningham chain Chris Caldwell et al., Top Twenty Cunningham Chains (2nd kind) Eric Weisstein's World of Mathematics, Fermat Pseudoprime MATHEMATICA Select[Range[9200], ! PrimeQ[ # ] && PowerMod[4, # - 1, # ] == 1 &] (* Farideh Firoozbakht, Sep 12 2006 *) PROG (PARI) isok(n) = (Mod(4, n)^(n-1)==1) && !isprime(n) && (n>1); \\ Michel Marcus, Apr 27 2018 CROSSREFS Subsequence of A122781. Contains A001567 (Fermat pseudoprimes to base 2) as a subsequence. Cf. A005382, A129521. Sequence in context: A279740 A281189 A206383 * A176033 A067401 A206169 Adjacent sequences:  A020133 A020134 A020135 * A020137 A020138 A020139 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 18:56 EST 2018. Contains 318150 sequences. (Running on oeis4.)