This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019581 Place n distinguishable balls in n boxes (in n^n ways); let f(n,k) = number of ways that max in any box is k, for 1<=k<=n; sequence gives f(n,2). 1
 0, 2, 18, 180, 2100, 28800, 458640, 8361360, 172141200, 3954484800, 100330876800, 2786980996800, 84133667217600, 2742770705875200, 96032990237184000, 3594185336405664000, 143193231131382432000, 6050494745192177280000, 270263142944131873536000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..200 FORMULA a(n) = sum(d=1..floor(n/2), n!^2 / ( 2^d * (n-2*d)! * d! * d! ) ). MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(b(n-j, i-1)/j!, j=0..min(2, n))))     end: a:= n-> n! *(b(n\$2) -1): seq(a(n), n=1..30);  # Alois P. Heinz, Jul 29 2014 MATHEMATICA a[n_] := n! (Hypergeometric2F1[1/2 - n/2, -n/2, 1, 2] - 1); Array[a, 30] (* Jean-François Alcover, Feb 18 2016 *) PROG (PARI) a(n) = sum(d=1, n\2, n!^2 / (2^d * (n-2*d)! * d!^2)); \\ Michel Marcus, Aug 13 2013 CROSSREFS Cf. A019576. Column k=2 of A019575. - Alois P. Heinz, Jul 29 2014 Sequence in context: A214768 A099044 A161122 * A183285 A129627 A279860 Adjacent sequences:  A019578 A019579 A019580 * A019582 A019583 A019584 KEYWORD nonn,easy AUTHOR Lee Corbin (lcorbin(AT)tsoft.com), N. J. A. Sloane. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)