login
a(n) is the concatenation of n and 5n.
9

%I #35 Dec 30 2023 23:43:27

%S 15,210,315,420,525,630,735,840,945,1050,1155,1260,1365,1470,1575,

%T 1680,1785,1890,1995,20100,21105,22110,23115,24120,25125,26130,27135,

%U 28140,29145,30150,31155,32160,33165,34170,35175,36180,37185,38190,39195,40200

%N a(n) is the concatenation of n and 5n.

%C All terms are divisible by 15. - _Michel Marcus_, Sep 21 2015

%H Vincenzo Librandi, <a href="/A019553/b019553.txt">Table of n, a(n) for n = 1..1000</a>

%H Sylvester Smith, <a href="https://www.gallup.unm.edu/~smarandache/SYLSMITH.HTM">A Set of Conjectures on Smarandache Sequences</a>, Bulletin of Pure and Applied Sciences, (Bombay, India), Vol. 15 E (No. 1), 1996, pp. 101-107.

%p a:=n->n*10^floor(log10(5*n)+1)+5*n: seq(a(n),n=1..50); # _Muniru A Asiru_, Jun 23 2018

%t n5n[n_]:=Module[{n5=5n},n*10^IntegerLength[n5]+n5]; Array[n5n,40] (* _Harvey P. Dale_, Apr 08 2012 *)

%t nxt[n_]:=Module[{idn=IntegerDigits[n], idn5=IntegerDigits[5n]}, FromDigits[Join[idn, idn5]]]; Array[nxt, 100] (* _Vincenzo Librandi_, Feb 04 2014 *)

%o (Magma) [Seqint(Intseq(5*n) cat Intseq(n)): n in [1..50]]; // _Vincenzo Librandi_, Feb 04 2014

%o (PARI) a(n) = eval(Str(n, 5*n)); \\ _Michel Marcus_, Sep 21 2015

%Y Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), this sequence (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

%K nonn,base,easy,less

%O 1,1

%A R. Muller