

A019529


Sum of a(n) terms of 1/sqrt(k) first strictly exceeds n.


15



1, 2, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 202, 217, 232, 247, 263, 280, 297, 314, 332, 351, 370, 389, 409, 430, 451, 472, 494, 517, 540, 563, 587, 612, 637, 662, 688, 715, 741, 769, 797, 825
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..56.


EXAMPLE

Let b(k) = 1 + 1/sqrt(2) + 1/sqrt(3) + ... + 1/sqrt(k):
.k.......1....2.....3.....4.....5.....6.....7

b(k)...1.00..1.71..2.28..2.78..3.23..3.64..4.01
For A019529 we have:
n=0: smallest k is a(0) = 1 since 1.00 > 0
n=1: smallest k is a(1) = 2 since 1.71 > 1
n=2: smallest k is a(2) = 3 since 2.28 > 2
n=3: smallest k is a(3) = 5 since 3.23 > 3
n=4: smallest k is a(4) = 7 since 4.01 > 4
For AA054040 we have:
n=1: smallest k is a(1) = 1 since 1.00 >= 1
n=2: smallest k is a(2) = 3 since 2.28 >= 2
n=3: smallest k is a(3) = 5 since 3.23 >= 3
n=4: smallest k is a(4) = 7 since 4.01 >= 4


MATHEMATICA

s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/Sqrt[ k ], 24 ]; k++ ]; Print[ k  1 ], {n, 1, 75} ]


CROSSREFS

A054040 is another version. See also A002387, A004080.
Sequence in context: A115024 A167050 A308388 * A194242 A173538 A130053
Adjacent sequences: A019526 A019527 A019528 * A019530 A019531 A019532


KEYWORD

nonn


AUTHOR

Robert G. Wilson v


EXTENSIONS

Edited by N. J. A. Sloane, Sep 01 2009


STATUS

approved



