login
A019527
Poincaré series [or Poincare series] for depths of roots in a certain root system.
1
4, 4, 5, 6, 8, 11, 15, 21, 30, 43, 62, 90, 131, 191, 279, 408, 597, 874, 1280, 1875, 2747, 4025, 5898, 8643, 12666, 18562, 27203, 39867, 58427, 85628, 125493, 183918, 269544, 395035, 578951, 848493, 1243526, 1822475, 2670966, 3914490, 5736963, 8407927
OFFSET
1,1
REFERENCES
Posting to sci.math.research by dima(AT)win.tue.nl (Dmitrii V. Pasechnik), Oct 28 1996.
LINKS
D. Pasechnik, Poincare series for the depths of roots in a root system, Sci. Math. Research posting Oct 28 1996.
FORMULA
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-a(n-4), for n>5.
G.f.: x*(x^4-4*x^3+x^2-4*x+4) / ((x-1)*(x^3+x-1)). - Colin Barker, Sep 27 2013
a(n) = a(n-1) + a(n-3) - 2, for n>4. - Greg Dresden, Feb 09 2020
MATHEMATICA
CoefficientList[Series[(x^4 - 4 x^3 + x^2 - 4 x + 4)/((x - 1) (x^3 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 16 2013 *)
LinearRecurrence[{2, -1, 1, -1}, {4, 4, 5, 6, 8}, 50] (* Harvey P. Dale, Oct 11 2019 *)
PROG
(PARI) Vec(x*(x^4-4*x^3+x^2-4*x+4)/((x-1)*(x^3+x-1)) + O(x^100)) \\ Colin Barker, Sep 27 2013
CROSSREFS
Sequence in context: A243427 A085581 A137902 * A062836 A137903 A091349
KEYWORD
nonn,easy
EXTENSIONS
More terms from Colin Barker, Sep 27 2013
STATUS
approved