

A019514


a(n) = (n!)^3 + 1.


2



2, 2, 9, 217, 13825, 1728001, 373248001, 128024064001, 65548320768001, 47784725839872001, 47784725839872000001, 63601470092869632000001, 109903340320478724096000001, 241457638684091756838912000001
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Since this is a sum of two cubes, it can be factorized. So all terms are divisible by n!+1. Thus only two primes occur in this sequence: a(0) and a(1).  Dmitry Kamenetsky, Sep 30 2008


REFERENCES

M. Le, On the Interesting Smarandache Product Sequences, Smarandache Notions Journal, Vol. 9, No. 12, 1998, 133134.
M. Le, The Primes in Smarandache Power Product Sequences, Smarandache Notions Journal, Vol. 9, No. 12, 1998, 9697.
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237240.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..181
F. Smarandache, Collected Papers, Vol. II
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
Eric Weisstein's World of Mathematics, Factorial
Eric Weisstein's World of Mathematics, Smarandache Sequences


MATHEMATICA

Table[(n!)^3 + 1, {n, 0, 25}] (* G. C. Greubel, Nov 30 2016 *)


CROSSREFS

Sequence in context: A205390 A204265 A081086 * A135816 A157341 A038036
Adjacent sequences: A019511 A019512 A019513 * A019515 A019516 A019517


KEYWORD

nonn,easy


AUTHOR

R. Muller


STATUS

approved



