

A019484


G.f.: (8 + 7 x  7 x^2  7 x^3)/(1  6 x  7 x^2 + 5 x^3 + 6 x^4).


1



8, 55, 379, 2612, 18002, 124071, 855106, 5893451, 40618081, 279942687, 1929384798, 13297456486, 91647010581, 631637678776, 4353291555505, 30003193292641, 206784130187015, 1425170850320396, 9822378297435246
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Agrees with A010918 for terms 0 through 11056 but then differs from it.


REFERENCES

R. K. Guy, personal communication.


LINKS

Table of n, a(n) for n=0..18.
Index entries for linear recurrences with constant coefficients, signature (6,7,5,6).


MAPLE

 (8 + 7*x  7*x^2  7*x^3) /(7*x^2  1 + 6*x  6*x^4  5*x^3);


MATHEMATICA

CoefficientList[ Series[(8 + 7 x  7 x^2  7 x^3)/(1  6 x  7 x^2 + 5 x^3 + 6 x^4), {x, 0, 18}], x] (* Robert G. Wilson v, May 16 2008 *)


CROSSREFS

Cf. A010918.
Sequence in context: A075734 A033890 A010924 * A010918 A108984 A264342
Adjacent sequences: A019481 A019482 A019483 * A019485 A019486 A019487


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

The old definition was a(n) = 3*a(n1) + a(n2)  2*a(n3), but as R. J. Mathar pointed out, this did not match the entries. I have therefore replaced the definition with a g.f. found by Superseeker.  N. J. A. Sloane, May 16 2008


STATUS

approved



