login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A019484 Expansion of (8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4). 2
8, 55, 379, 2612, 18002, 124071, 855106, 5893451, 40618081, 279942687, 1929384798, 13297456486, 91647010581, 631637678776, 4353291555505, 30003193292641, 206784130187015, 1425170850320396, 9822378297435246, 67696525926163327, 466569244606302614 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Agrees with A010918 for terms 0 through 11056 but then differs from it.

REFERENCES

R. K. Guy, personal communication.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,7,-5,-6).

FORMULA

G.f.: (8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4).

MAPLE

- (8 + 7*x - 7*x^2 - 7*x^3) /(7*x^2 - 1 + 6*x - 6*x^4 - 5*x^3);

MATHEMATICA

CoefficientList[ Series[(8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4), {x, 0, 18}], x] (* Robert G. Wilson v, May 16 2008 *)

LinearRecurrence[{6, 7, -5, -6}, {8, 55, 379, 2612}, 20] (* Harvey P. Dale, Apr 20 2017 *)

PROG

(MAGMA) I:=[8, 55, 379, 2612]; [n le 4 select I[n] else 6*Self(n-1)+7*Self(n-2)-5*Self(n-3)-6*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 21 2017

CROSSREFS

Cf. A010918.

Sequence in context: A033890 A010924 A010918 * A108984 A264342 A230963

Adjacent sequences:  A019481 A019482 A019483 * A019485 A019486 A019487

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

The old definition was a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3), but as R. J. Mathar pointed out, this did not match the entries. I have therefore replaced the definition with a g.f. found by Superseeker. - N. J. A. Sloane, May 16 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 26 18:16 EDT 2017. Contains 289839 sequences.