The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019477 Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(3,15) (agrees with A019478 only for n <= 23). 2
 3, 15, 76, 386, 1961, 9963, 50618, 257170, 1306579, 6638211, 33726124, 171349094, 870556961, 4422955527, 22471287314, 114167721214, 580041026803, 2946958993287, 14972332829596, 76068500060858, 386473956154025, 1963521282342195, 9975874867682426 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. MAPLE a:= proc(n) option remember;       `if`(n<2, [3, 15][n+1], floor(a(n-1)^2/a(n-2))+1)     end: seq(a(n), n=0..40);  # Alois P. Heinz, Sep 18 2015 MATHEMATICA S[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = Last@ s + 1; While[k/s[[i - 1]] <= s[[i - 1]]/s[[i - 2]], k++]; AppendTo[s, k], {i, 3, n}]; s]; S[3, 15, 10] (* Michael De Vlieger, Feb 15 2016 *) PROG (PARI) S(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=a[n-1]^2\a[n-2]+1); a S(3, 15, 40) \\ Colin Barker, Feb 15 2016 CROSSREFS Sequence in context: A322186 A037759 A037647 * A019478 A151327 A125700 Adjacent sequences:  A019474 A019475 A019476 * A019478 A019479 A019480 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 23:52 EDT 2021. Contains 343156 sequences. (Running on oeis4.)