The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019444 a_1, a_2, ..., is a permutation of the positive integers such that the average of each initial segment is an integer, using the greedy algorithm to define a_n. 15
 1, 3, 2, 6, 8, 4, 11, 5, 14, 16, 7, 19, 21, 9, 24, 10, 27, 29, 12, 32, 13, 35, 37, 15, 40, 42, 17, 45, 18, 48, 50, 20, 53, 55, 22, 58, 23, 61, 63, 25, 66, 26, 69, 71, 28, 74, 76, 30, 79, 31, 82, 84, 33, 87, 34, 90, 92, 36, 95, 97, 38, 100, 39, 103, 105, 41, 108, 110, 43, 113 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Self-inverse when considered as a permutation or function, i.e. a(a(n)) = n. - Howard A. Landman, Sep 25 2001 That each initial segment has an integer average is trivially equivalent to the sum of the first n elements always being divisible by n. - Franklin T. Adams-Watters, Jul 07 2014 Also, a lexicographically minimal sequence of distinct positive integers such that all values of a(n)-n are also distinct. - Ivan Neretin, Apr 18 2015 REFERENCES Muharem Avdispahić and Faruk Zejnulahi, An integer sequence with a divisibility property, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333. LINKS Franklin T. Adams-Watters, Table of n, a(n) for n=1..10000 A. Shapovalov, Problem M1517 (in Russian), Kvant 5 (1995), 20-21. English translation appeared in Quantum problem M185, Sept/October 1996 (beware, file is 75Mb). The Math Forum, Problem of the Week 818 B. J. Venkatachala, A curious bijection on natural numbers, JIS 12 (2009) 09.8.1. FORMULA a(n) = A002251(n-1) + 1. (Corrected by M. F. Hasler, Sep 17 2014) Let s(n) = sum(k=1,n,a(k))/n = A019446(n). Then if s(n-1) does not occur in a(1),...,a(n-1), a(n) = s(n) = s(n-1); otherwise, a(n) = s(n-1) + n and s(n) = s(n-1) + 1. [Franklin T. Adams-Watters, May 20 2010] Lim_{n->infinity}(max(n,a(n))/min(n,a(n)) = phi = A001622. - Stanislav Sykora, Jun 12 2017 MAPLE P:=proc(q) local a, b, i, n; a:=; b:=1; for i from 2 to 70 do for n from 1 to q do if numboccur(a, n)=0 then if frac((b+n)/i)=0 then a:=[op(a), n]; b:=b+n; break; fi; fi; od; od; op(a); end: P(10^9); # Paolo P. Lava, Jul 11 2019 MATHEMATICA a=1; a[n_] := a[n]=Module[{s, v}, s=a/@Range[n-1]; For[v=Mod[ -Plus@@s, n], v<1||MemberQ[s, v], v+=n, Null]; v] lst = {1}; f[s_List] := Block[{k = 1, len = 1 + Length@ lst, t = Plus @@ lst}, While[ MemberQ[s, k] || Mod[k + t, len] != 0, k++ ]; AppendTo[lst, k]]; Nest[f, lst, 69] (* Robert G. Wilson v, May 17 2010 *) Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] - Total[#1]] &, {1}, Range[2, 70]] (* Birkas Gyorgy, May 25 2012 *) PROG (PARI) al(n)=local(v, s, fnd); v=vector(n); v=s=1; for(k=2, n, fnd=0; for(i=1, k-1, if(v[i]==s, fnd=1; break)); v[k]=if(fnd, s+k, s); s+=fnd); v \\ Franklin T. Adams-Watters, May 20 2010 (PARI) A019444_upto(N, c=0, A=Vec(1, N))={for(n=2, N, A[n]||(#A

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 17:13 EDT 2021. Contains 347658 sequences. (Running on oeis4.)