login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A019428 Continued fraction for tan(1/5). 3
0, 4, 1, 13, 1, 23, 1, 33, 1, 43, 1, 53, 1, 63, 1, 73, 1, 83, 1, 93, 1, 103, 1, 113, 1, 123, 1, 133, 1, 143, 1, 153, 1, 163, 1, 173, 1, 183, 1, 193, 1, 203, 1, 213, 1, 223, 1, 233, 1, 243, 1, 253, 1, 263, 1, 273, 1, 283, 1, 293, 1, 303, 1, 313, 1, 323, 1, 333, 1, 343, 1, 353, 1, 363, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000

G. Xiao, Contfrac

Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).

FORMULA

From Colin Barker, Sep 08 2013: (Start)

a(n) = (-1+3*(-1)^n-5*(-1+(-1)^n)*n)/2 for n>1.

a(n) = 2*a(n-2)-a(n-4) for n>5.

G.f.: x*(x^4-x^3+5*x^2+x+4) / ((x-1)^2*(x+1)^2). (End)

EXAMPLE

0.20271003550867248332135827... = 0 + 1/(4 + 1/(1 + 1/(13 + 1/(1 + ...)))). - Harry J. Smith, Jun 13 2009

MATHEMATICA

Join[{0, 4}, LinearRecurrence[{0, 2, 0, -1}, {1, 13, 1, 23}, 100]] (* Vincenzo Librandi, Jan 03 2016 *)

PROG

(PARI) { allocatemem(932245000); default(realprecision, 93000); x=contfrac(tan(1/5)); for (n=0, 20000, write("b019428.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 13 2009

(PARI) Vec(x*(x^4-x^3+5*x^2+x+4)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013

(MAGMA) [0, 4] cat [(-1+3*(-1)^n-5*(-1+(-1)^n)*n)/2: n in [2..80]]; // Vincenzo Librandi, Jan 03 2016

CROSSREFS

Cf. A161014 (decimal expansion). - Harry J. Smith, Jun 13 2009

Sequence in context: A002564 A287640 A322078 * A303547 A184753 A324186

Adjacent sequences:  A019425 A019426 A019427 * A019429 A019430 A019431

KEYWORD

nonn,cofr,easy

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)