|
|
A018938
|
|
Decimal expansion of e^Pi - Pi.
|
|
3
|
|
|
1, 9, 9, 9, 9, 0, 9, 9, 9, 7, 9, 1, 8, 9, 4, 7, 5, 7, 6, 7, 2, 6, 6, 4, 4, 2, 9, 8, 4, 6, 6, 9, 0, 4, 4, 4, 9, 6, 0, 6, 8, 9, 3, 6, 8, 4, 3, 2, 2, 5, 1, 0, 6, 1, 7, 2, 4, 7, 0, 1, 0, 1, 8, 1, 7, 2, 1, 6, 5, 2, 5, 9, 4, 4, 4, 0, 4, 2, 4, 3, 7, 8, 4, 8, 8, 8, 9, 3, 7, 1, 7, 1, 7, 2, 5, 4, 3, 2, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
Sum_{k>=0} A176696(k)/(2^k*k!)= e^Pi - Pi. - Jaume Oliver Lafont, Apr 24 2010
|
|
REFERENCES
|
J. H. Conway, personal communication.
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 2..20000
Robert Munafo, Pi Day: the Second Approximation, RIES - Find Algebraic Equations, Given Their Solution.
Randall Munroe, e to the pi Minus pi, xkcd Web Comic #217, Jan 31 2007.
Simon Plouffe, exp(Pi)-Pi to 10000 digits
Simon Plouffe, exp(Pi)-Pi to 2000 digits
Wikipedia, Gelfond's constant.
|
|
EXAMPLE
|
19.99909997918947576726644298466904449606893684322510617247010181721652...
|
|
MATHEMATICA
|
RealDigits[E^Pi-Pi, 10, 120][[1]] (* Harvey P. Dale, Mar 09 2014 *)
|
|
PROG
|
(PARI) { default(realprecision, 20080); x=(exp(1)^Pi-Pi)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b018938.txt", n, " ", d)); } \\ Harry J. Smith, May 14 2009
|
|
CROSSREFS
|
Cf. A018939 (continued fraction), A176696.
Sequence in context: A330119 A258815 A114054 * A292888 A111659 A102819
Adjacent sequences: A018935 A018936 A018937 * A018939 A018940 A018941
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|