

A018921


Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}<a_{n+1}/a_n for n >= 0. This is T(4,8).


3



4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(n) = A008937(n+2) = A027084(n+3)+1.


REFERENCES

D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences,Advances in Number Theory ( Kingston ON,1991) 333340,Oxford Sci. Publ.,Oxford Univ. Press, New York,1993;.


LINKS

Table of n, a(n) for n=0..24.


FORMULA

Probably satisfies a(n) = 2*a(n1)  a(n4).
Empirical G.f.: (4x^22*x^3)/(12*x+x^4). [Colin Barker, Feb 08 2012]


CROSSREFS

Cf. A008937.
Sequence in context: A024624 A098196 A027961 * A103536 A011970 A111988
Adjacent sequences: A018918 A018919 A018920 * A018922 A018923 A018924


KEYWORD

nonn


AUTHOR

R. K. Guy


STATUS

approved



