This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018921 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(4,8). 4
 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788, 2481721640 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Not to be confused with the Pisot T(4,8) sequence, which is A020707. - R. J. Mathar, Feb 13 2016 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993 Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1). FORMULA a(n) = 2*a(n-1) - a(n-4). G.f.: (4-x^2-2*x^3) / ((1-x)*(1-x-x^2-x^3)). - Colin Barker, Feb 08 2012 a(n) = A008937(n+2) = A027084(n+3)+1. a(n) = 2*a(n-1) - A008937(n). - Vincenzo Librandi, Feb 12 2016 MATHEMATICA RecurrenceTable[{a[1] == 4, a[2] == 8, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 40}] (* Bruno Berselli, Feb 17 2016 *) PROG (PARI) Vec((4-x^2-2*x^3)/((1-x)*(1-x-x^2-x^3)) + O(x^40)) \\ Colin Barker, Feb 13 2016 (PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a T(4, 8, 30) \\ Colin Barker, Feb 14 2016 (MAGMA) Tiv:=[4, 8]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016 CROSSREFS Cf. A008937. Sequence in context: A024624 A098196 A027961 * A103536 A011970 A111988 Adjacent sequences:  A018918 A018919 A018920 * A018922 A018923 A018924 KEYWORD nonn,easy AUTHOR EXTENSIONS Comments moved to formula, and typo in data fixed by Colin Barker, Feb 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.