login
Pisot sequence T(3,10), a(n) = floor(a(n-1)^2/a(n-2)).
2

%I #24 Jul 13 2023 09:30:18

%S 3,10,33,108,353,1153,3766,12300,40172,131202,428506,1399501,4570771,

%T 14928140,48755311,159234864,520061125,1698519827,5547366384,

%U 18117700664,59172417076,193257136076,631177877968,2061427183105,6732621943159,21988745758766

%N Pisot sequence T(3,10), a(n) = floor(a(n-1)^2/a(n-2)).

%H Colin Barker, <a href="/A018920/b018920.txt">Table of n, a(n) for n = 0..1000</a>

%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>

%F a(n) = 3*a(n-1) + a(n-2) - a(n-4) - a(n-5) - a(n-6) (holds at least up to n = 1000 but is not known to hold in general).

%p PisotT := proc(a0,a1,n)

%p option remember;

%p if n = 0 then

%p a0 ;

%p elif n = 1 then

%p a1;

%p else

%p floor( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)) ;

%p end if;

%p end proc:

%p A018920 := proc(n)

%p PisotT(3,10,n) ;

%p end proc: # _R. J. Mathar_, Feb 13 2016

%t RecurrenceTable[{a[0] == 3, a[1] == 10, a[n] == Floor[a[n - 1]^2/a[n - 2] ]}, a, {n, 0, 30}] (* _Bruno Berselli_, Feb 05 2016 *)

%o (Magma) Txy:=[3,10]; [n le 2 select Txy[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..30]]; // _Bruno Berselli_, Feb 05 2016

%o (PARI) pisotT(nmax, a1, a2) = {

%o a=vector(nmax); a[1]=a1; a[2]=a2;

%o for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));

%o a

%o }

%o pisotT(50, 3, 10) \\ _Colin Barker_, Jul 29 2016

%Y See A008776 for definitions of Pisot sequences.

%K nonn

%O 0,1

%A _R. K. Guy_

%E Corrected by _David W. Wilson_