This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018889 Shortest representation as sum of positive cubes requires exactly 8 cubes. 9


%S 15,22,50,114,167,175,186,212,231,238,303,364,420,428,454

%N Shortest representation as sum of positive cubes requires exactly 8 cubes.

%C Wieferich proved that 167 is the unique prime in this sequence. - _Jonathan Vos Post_, Sep 23 2006

%D J. Bohman and C.-E. Froberg, Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.

%D K. S. McCurley, An effective seven-cube theorem, J. Number Theory, 19 (1984), 176-183.

%D Joe Roberts, Lure of the Integers, entry 239.

%H G. L. Honaker, Jr. and Chris Caldwell, et al., <a href="http://primes.utm.edu/curios/page.php?short=167">A Prime Curios Page</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WaringsProblem.html">Warings Problem</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>

%t max = 500; nn = Union[(#*#).# & /@ Tuples[Range[0, 7], {7}]][[1 ;; max]]; Select[{#, PowersRepresentations[#, 8, 3]} & /@ Complement[Range[max], nn] , #[[2]] != {} &][[All, 1]] (* _Jean-Fran├žois Alcover_, Jul 21 2011 *)

%Y Subsequence of A018888.

%K nonn,fini,full,nice

%O 1,1

%A Anon

%E Corrected by Arlin Anderson (starship1(AT)gmail.com). Additional comments from _Jud McCranie_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 03:02 EST 2016. Contains 278771 sequences.