A note on A018248

Peter Bala, Nov 102022

NAME: The $10-$ adic integer $x=\ldots 1787109376$ satisfies $x^{2}=x$.

DATA: $\quad 6,7,3,9,0,1,7,8,7,1,8,0,0,4,7,3, \ldots$
The table below shows the trailing digits of the integers $2^{10^{n}}, 4^{10^{n}}$ and $6^{10^{n}}$, with the final $n+1$ digits in bold.

n	$2^{10^{n}}$	$4^{10^{n}}$	$6^{10^{n}}$
2	.. 03205376	...35301376	... 41477376
3	...68069376	... 49029376	... 10789376
4	...96709376	...6309376	...23909376
5	...83109376	... 79109376	...55109376
6	...47109376	... 07109376	... 67109376
7	... 87109376	... 87109376	... 87109376

Claim. For $n>=2$, the final $n+1$ digits of either $2^{10^{n}}, 4^{10^{n}}$ or $6^{10^{n}}$, when read in reverse order, give the first $n+1$ entries in A018248.
The proof is an easy consequence of the following result due to Euler: the congruence

$$
\begin{equation*}
a^{p^{r}} \equiv a^{p^{r-1}}\left(\bmod p^{r}\right) \tag{1}
\end{equation*}
$$

holds for all integers $a \in \mathbb{Z}$, for all primes p and all positive integers r.
a) Let $n \geq 2$. First we show that the integers $2^{10^{n}}$ and $2^{10^{n+1}}$ have the same final $n+1$ decimal digits, that is,

$$
\begin{equation*}
2^{10^{n+1}} \equiv 2^{10^{n}}\left(\bmod 10^{n+1}\right) \tag{2}
\end{equation*}
$$

or, equivalently,

$$
2^{10^{n}}\left(2^{9\left(10^{n}\right)}-1\right) \equiv 0\left(\bmod 2^{n+1} 5^{n+1}\right)
$$

Clearly, 2^{n+1} divides $2^{10^{n}}$. Thus to prove (2) it suffices to show that

$$
\begin{equation*}
2^{9\left(10^{n}\right)}-1 \equiv 0\left(\bmod 5^{n+1}\right) . \tag{3}
\end{equation*}
$$

Setting $a=2^{m}, m$ a nonnegative integer, $r=n+1$ and $p=5$ in Euler's congruence (1) yields

$$
2^{m 5^{n+1}} \equiv 2^{m 5^{n}}\left(\bmod 5^{n+1}\right)
$$

leading to

$$
2^{m 5^{n}}\left(2^{4 m\left(5^{n}\right)}-1\right) \equiv 0\left(\bmod 5^{n+1}\right)
$$

and hence

$$
\begin{equation*}
2^{4 m\left(5^{n}\right)}-1 \equiv 0\left(\bmod 5^{n+1}\right) \tag{4}
\end{equation*}
$$

Setting $m=\frac{9\left(2^{n}\right)}{4}($ an integer for $n \geq 2)$ in (4) yields (3) and thus establishes (2).

An immediate consequence of this result is that

$$
x:=\text { the } 10 \text {-adic limit }\{n \rightarrow \infty\} 2^{10^{n}} \bmod 10^{n}
$$

is a well-defined 10-adic integer.
b) Still with $n>=2$, we show next that the integers $2^{10^{n}}$ and $4^{10^{n}}$ have the same final $n+1$ decimal digits.

Put $m=\frac{2^{n}}{4}$ in (4) to find

$$
\begin{equation*}
2^{10^{n}}-1 \equiv 0\left(\bmod 5^{n+1}\right) \tag{5}
\end{equation*}
$$

Multiplying the congruence (5) by $2^{10^{n}}$ we see that

$$
\begin{equation*}
4^{10^{n}}-2^{10^{n}} \equiv 0\left(\bmod 10^{n+1}\right) \tag{6}
\end{equation*}
$$

Thus the integers $2^{10^{n}}$ and $4^{10^{n}}$ have the same final $n+1$ decimal digits. It follows from (6) that
$x^{2}=$ the 10 -adic limit_ $\{n \rightarrow \infty\} 4^{10^{n}}=$ the 10 -adic limit_ $\{n \rightarrow \infty\} 2^{10^{n}}=x$.
Therefore, x is an idempotent in the ring of 10-adic integers (with its rightmost digit equal to 6) and so must be A018248 (the other 3 idempotents being 0,1 and $\mathrm{A} 018247=1-x=\ldots 18212890625$).
c) By an argument similar to that which proved (5) we can show that

$$
\begin{equation*}
3^{10^{n}}-1 \equiv 0\left(\bmod 5^{n+1}\right) \tag{7}
\end{equation*}
$$

Multiplying (7) by $2^{10^{n}}$ leads to the congruence

$$
\begin{equation*}
6^{10^{n}}-2^{10^{n}} \equiv 0\left(\bmod 10^{n+1}\right) \tag{8}
\end{equation*}
$$

showing that the integers $2^{10^{n}}$ and $6^{10^{n}}$ also have the same final $n+1$ decimal digits.

