This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018210 Alkane (or paraffin) numbers l(9,n). 5
 1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520, 4032, 6216, 9324, 13608, 19440, 27192, 37389, 50556, 67408, 88660, 115258, 148148, 188552, 237692, 297115, 368368, 453376, 554064, 672792, 811920, 974304, 1162800, 1380825, 1631796 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From M. F. Hasler, May 02 2009: (Start) Also, 6th column of A159916, i.e., number of 6-element subsets of {1,...,n+6} whose elements add up to an odd integer. Third differences are A002412([n/2]). (End) F(1,6,n) is the number of bracelets with 1 blue, 6 identical red and n identical black beads. If F(1,6,1) = 4 and F(1,6,2) = 16 taken as a base, F(1,6,n) = n(n+1)(n+2)(n+3)(n+4)/120 + F(1,4,n) + F(1,6,n-2). F(1,4,n) is the number of bracelets with 1 blue, 4 identical red and n identical black beads. If F(1,4,1) = 3 and F(1,4,2) = 9 taken as a base; F(1,4,n) = n(n+1)(n+2)/6 + F(1,2,n) + F(1,4,n-2). F(1,2,n) is the number of bracelets with 1 blue, 2 identical red and n identical black beads. If F(1,2,1) = 2 and F(1,2,2) = 4 taken as a base F(1,2,n) = n + 1 + F(1,2,n-2). - Ata Aydin Uslu and Hamdi G. Ozmenekse, Mar 16 2012 REFERENCES S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. Winston C. Yang (paper in preparation). LINKS N. J. A. Sloane, Classic Sequences S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy) Ata A. Uslu and Hamdi G. Ozmenekse, F(1,6,n) Ata A. Uslu and Hamdi G. Ozmenekse, F(1,4,n) Ata A. Uslu and Hamdi G. Ozmenekse, F(1,2,n) Index entries for linear recurrences with constant coefficients, signature (4, -3, -8, 14, 0, -14, 8, 3, -4, 1). FORMULA G.f.: (1+3*x^2)/(1-x)^4/(1-x^2)^3. - N. J. A. Sloane l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd. a(2n) = (n+1)(n+2)(n+3)^2(4n^2+6n+5)/90, a(2n-1) = n(n+1)(n+2)(n+3)(4n^2+6n+5)/90. - M. F. Hasler, May 02 2009 a(n) = (1/(2*6!))*(n+2)*(n+4)*(n+6)*((n+1)*(n+3)*(n+5) + 1*3*5) - (1/2)*(1/2^4)*(n^2+7*n+11)*(1/2)*(1-(-1)^n). - Yosu Yurramendi, Jun 23 2013 MAPLE a:=n-> (Matrix([[1, 0\$7, 3, 12]]). Matrix(10, (i, j)-> if (i=j-1) then 1 elif j=1 then [4, -3, -8, 14, 0, -14, 8, 3, -4, 1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..33); # Alois P. Heinz, Jul 31 2008 MATHEMATICA CoefficientList[(1+3*x^2)/((1-x)^7*(1+x)^3) + O[x]^34, x] (* Jean-François Alcover, Jun 08 2015 *) LinearRecurrence[{4, -3, -8, 14, 0, -14, 8, 3, -4, 1}, {1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520}, 34] (* Ray Chandler, Sep 23 2015 *) PROG (PARI) A018210(n)=(n+2)*(n+4)*(n+6)^2*(n^2+3*n+5)/1440-if(n%2, (n^2+7*n+11)/32) \\ M. F. Hasler, May 02 2009 CROSSREFS Cf. A005995 (first differences). Sequence in context: A212960 A217873 A289086 * A054498 A293629 A217553 Adjacent sequences:  A018207 A018208 A018209 * A018211 A018212 A018213 KEYWORD nonn AUTHOR N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 10:20 EDT 2018. Contains 313915 sequences. (Running on oeis4.)