login
Powers of cube root of 16 rounded up.
21

%I #13 Sep 08 2022 08:44:44

%S 1,3,7,16,41,102,256,646,1626,4096,10322,26008,65536,165141,416128,

%T 1048576,2642246,6658043,16777216,42275936,106528682,268435456,

%U 676414964,1704458901,4294967296,10822639410,27271342416,68719476736,173162230555

%N Powers of cube root of 16 rounded up.

%H Vincenzo Librandi, <a href="/A018023/b018023.txt">Table of n, a(n) for n = 0..200</a>

%t With[{c=16^(1/3)}, Ceiling[c^Range[0, 30]]] (* _Harvey P. Dale_, Oct 09 2012 *)

%t Table[Ceiling[16^(n/3)], {n, 0, 40}] (* _Vincenzo Librandi_, Jan 09 2014 *)

%o (Magma) [Ceiling(16^(n/3)): n in [0..40]]; // _Vincenzo Librandi_, Jan 09 2014

%Y Cf. powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), this sequence (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Vincenzo Librandi_, Jan 09 2014