OFFSET
0,4
COMMENTS
Rounding has no effect when n is a multiple of 3, because then obviously (2^(1/3))^n = 2^(n/3). - Alonso del Arte, Jan 04 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
EXAMPLE
a(2) = 1 because the cube root of 2 squared is 1.5874...
a(3) = 2 because the cube root of 2 cubed is 2 exactly.
a(4) = 2 because the cube root of 2 to the fourth power is 2.519842...
MATHEMATICA
Table[Floor[(2^(1/3))^n], {n, 0, 49}] (* Alonso del Arte, Jan 04 2014 *)
PROG
(Magma) [Floor(2^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 06 2014
(Python)
from sympy import integer_nthroot
def A017979(n): return integer_nthroot(1<<n, 3)[0] # Chai Wah Wu, Jun 18 2024
CROSSREFS
Sequences of the type: Powers of cube root of (k) rounded down: this sequence (k=2), A017982 (k=3), A017985 (k=4), A017988 (k=5), A017991 (k=6), A017994 (k=7), A018000 (k=9), A018003 (k=10), A018006 (k=11), A018009 (k=12), A018012 (k=13), A018015 (k=14), A018018 (k=15), A018021 (k=16), A018024 (k=17), A018027 (k=18), A018030 (k=19), A018033 (k=20), A018036 (k=21), A018039 (k=22), A018042 (k=23), A018045 (k=24).
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(44)-a(50) from Alex Ratushnyak, Jan 04 2014
STATUS
approved