login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017874 Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16). 1
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 16, 20, 25, 31, 38, 47, 56, 67, 80, 96, 116, 141, 172, 211, 257, 313, 380, 460, 556, 672, 813, 986, 1196, 1453, 1766, 2146, 2606, 3162 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,17

COMMENTS

Number of compositions of n into parts p where 8 <= p <= 16. [Joerg Arndt, Jun 29 2013]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1).

FORMULA

a(n) = a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) for n>15. - Vincenzo Librandi, Jun 29 2013

MATHEMATICA

CoefficientList[Series[1 / (1 - Total[x^Range[8, 16]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 29 2013 *)

LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}, 60] (* Harvey P. Dale, Dec 05 2015 *)

PROG

(MAGMA) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]; [n le 16 select I[n] else Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14)+Self(n-15)+Self(n-16): n in [1..70]]; // Vincenzo Librandi, Jun 29 2013

CROSSREFS

Sequence in context: A033552 A062420 A089197 * A029016 A290807 A121385

Adjacent sequences:  A017871 A017872 A017873 * A017875 A017876 A017877

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 16:15 EST 2018. Contains 299296 sequences. (Running on oeis4.)