login
A017872
Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
1
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 6, 7, 9, 12, 16, 21, 28, 33, 37, 41, 46, 53, 63, 77, 99, 126, 156, 188, 222, 259, 301, 350, 416, 505, 620, 762, 931, 1127, 1351, 1602, 1892, 2241, 2673
OFFSET
0,18
COMMENTS
Number of compositions of n into parts p where 8 <= p <= 14. [Joerg Arndt, Jun 29 2013]
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) for n>13. - Vincenzo Librandi, Jun 29 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[8, 14]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 29 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1}, 60] (* Harvey P. Dale, Oct 07 2024 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]; [n le 14 select I[n] else Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14): n in [1..70]]; // Vincenzo Librandi, Jun 29 2013
CROSSREFS
Sequence in context: A073794 A017892 A017882 * A206495 A161209 A279513
KEYWORD
nonn,easy
AUTHOR
STATUS
approved