login
A017871
Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13).
1
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 4, 5, 7, 10, 15, 21, 25, 27, 28, 29, 31, 35, 45, 62, 83, 105, 126, 145, 161, 175, 195, 230, 285, 361, 456, 566, 682, 795, 907, 1032, 1191, 1407, 1702
OFFSET
0,18
COMMENTS
Number of compositions of n into parts p where 8 <= p <= 13. [Joerg Arndt, Jun 29 2013]
LINKS
FORMULA
a(n) = a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) for n>12. - Vincenzo Librandi, Jun 29 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[8, 13]]), {x, 0, 70}], x] (* Harvey P. Dale, Mar 16 2011 *)
CoefficientList[Series[1 / (1 - x^8 - x^9 - x^10 - x^11 - x^12 - x^13), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 29 2013 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^8-x^9-x^10-x^11-x^12-x^13))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]; [n le 13 select I[n] else Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13): n in [1..70]]; // Vincenzo Librandi, Jun 29 2013
CROSSREFS
Sequence in context: A073793 A017891 A017881 * A366259 A354153 A017861
KEYWORD
nonn,easy
AUTHOR
STATUS
approved