login
A017863
Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
1
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 19, 24, 30, 38, 46, 56, 68, 83, 102, 126, 157, 194, 240, 296, 364, 447, 549, 676, 832, 1026, 1266, 1562, 1926, 2373, 2923, 3598, 4430, 5456, 6722
OFFSET
0,15
COMMENTS
Number of compositions of n into parts p where 7 <= p <= 14. [Joerg Arndt, Jun 28 2013]
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14), for n>13. - Vincenzo Librandi, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14), {x, 0, 60}], x] (* Harvey P. Dale, Jun 14 2011 *)
CoefficientList[Series[1 / (1 - Total[x^Range[7, 14]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 28 2013 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]; [n le 14 select I[n] else Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14): n in [1..70]]; // Vincenzo Librandi, Jun 28 2013
CROSSREFS
Sequence in context: A008673 A133564 A342558 * A242634 A088567 A029014
KEYWORD
nonn,easy
AUTHOR
STATUS
approved