login
Expansion of 1/(1 - x^5 - x^6).
11

%I #42 Feb 01 2024 10:42:36

%S 1,0,0,0,0,1,1,0,0,0,1,2,1,0,0,1,3,3,1,0,1,4,6,4,1,1,5,10,10,5,2,6,15,

%T 20,15,7,8,21,35,35,22,15,29,56,70,57,37,44,85,126,127,94,81,129,211,

%U 253,221,175,210,340,464,474,396,385,550,804,938,870,781,935,1354,1742,1808,1651,1716,2289,3096

%N Expansion of 1/(1 - x^5 - x^6).

%C Number of compositions of n into parts 5 and 6. - _Joerg Arndt_, Jun 27 2013

%H Seiichi Manyama, <a href="/A017837/b017837.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi)

%H Johann Cigler, <a href="https://arxiv.org/abs/2212.02118">Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials</a>, arXiv:2212.02118 [math.NT], 2022.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,1).

%F a(n) = a(n-6) + a(n-5). - _Jon E. Schoenfield_, Aug 07 2006

%t CoefficientList[Series[1 / (1 - Total[x^Range[5, 6]]), {x, 0, 50}], x] (* _Vincenzo Librandi_ Jun 27 2013 *)

%o (PARI) Vec(1/(1-x^5-x^6)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012

%o (Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^5-x^6))); /* or */ I:=[1,0,0,0,0,1]; [n le 6 select I[n] else Self(n-5)+Self(n-6): n in [1..70]]; // _Vincenzo Librandi_, Jun 27 2013

%Y Column 5 of A306713.

%Y Cf. A099132.

%K nonn,easy

%O 0,12

%A _N. J. A. Sloane_