login
A017836
Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
1
1, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 18, 25, 35, 49, 66, 90, 124, 172, 236, 323, 443, 610, 839, 1152, 1581, 2173, 2987, 4104, 5636, 7743, 10640, 14620, 20084, 27591, 37908, 52085, 71559, 98311, 135067
OFFSET
0,9
COMMENTS
Number of compositions (ordered partitions) of n into parts 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14. - Ilya Gutkovskiy, May 25 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,1,1,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) for n>13. - Vincenzo Librandi, Jun 27 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[4, 14]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14))); // Vincenzo Librandi, Jun 27 2013
CROSSREFS
Sequence in context: A087830 A039857 A255216 * A321481 A238874 A099559
KEYWORD
nonn,easy
AUTHOR
STATUS
approved