login
A017835
Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
1
1, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 18, 25, 35, 47, 64, 88, 122, 167, 228, 312, 429, 589, 807, 1106, 1517, 2081, 2853, 3912, 5365, 7358, 10089, 13834, 18971, 26017, 35677, 48922, 67086, 91997, 126157
OFFSET
0,9
COMMENTS
Number of compositions (ordered partitions) of n into parts 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. - Ilya Gutkovskiy, May 25 2017
LINKS
FORMULA
a(n) = a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) for n>12. - Vincenzo Librandi, Jun 27 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[4, 13]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13))); // Vincenzo Librandi, Jun 27 2013
CROSSREFS
Sequence in context: A241338 A271489 A018127 * A007601 A195944 A087830
KEYWORD
nonn,easy
AUTHOR
STATUS
approved