login
A017834
Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
1
1, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 9, 13, 18, 25, 33, 45, 62, 86, 117, 159, 217, 298, 408, 558, 762, 1042, 1425, 1950, 2667, 3647, 4986, 6819, 9327, 12757, 17445, 23856, 32625, 44620, 61023, 83454, 114129
OFFSET
0,9
COMMENTS
Number of compositions (ordered partitions) of n into parts 4, 5, 6, 7, 8, 9, 10, 11 and 12. - Ilya Gutkovskiy, May 25 2017
LINKS
FORMULA
a(n) = a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) for n>11. - Vincenzo Librandi, Jun 27 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[4, 12]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12))); // Vincenzo Librandi, Jun 27 2013
CROSSREFS
Sequence in context: A188674 A320316 A236166 * A286225 A239048 A219898
KEYWORD
nonn,easy
AUTHOR
STATUS
approved