login
A017832
Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
1
1, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 4, 6, 9, 13, 16, 21, 29, 41, 55, 73, 98, 135, 184, 248, 333, 452, 615, 834, 1126, 1523, 2065, 2801, 3792, 5131, 6948, 9416, 12756, 17272, 23386, 31676, 42909, 58116, 78701, 106585
OFFSET
0,9
COMMENTS
Number of compositions (ordered partitions) of n into parts 4, 5, 6, 7, 8, 9 and 10. - Ilya Gutkovskiy, May 25 2017
FORMULA
a(n) = a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) for n>9. - Vincenzo Librandi, Jun 27 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[4, 10]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
LinearRecurrence[{0, 0, 0, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 1, 2, 3}, 50] (* Harvey P. Dale, Jul 23 2021 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10))); // Vincenzo Librandi, Jun 27 2013
CROSSREFS
Sequence in context: A331848 A290728 A296116 * A347713 A056880 A053273
KEYWORD
nonn,easy
AUTHOR
STATUS
approved