|
|
A017796
|
|
Binomial coefficients C(80,n).
|
|
3
|
|
|
1, 80, 3160, 82160, 1581580, 24040016, 300500200, 3176716400, 28987537150, 231900297200, 1646492110120, 10477677064400, 60246643120300, 315136287090800, 1508152231077400, 6635869816740560, 26958221130508525, 101489773667796800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Row 80 of A007318.
|
|
LINKS
|
Nathaniel Johnston, Table of n, a(n) for n = 0..80 (full sequence)
|
|
FORMULA
|
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1+x)^80.
E.g.f.: 1F1(-80; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
|
|
MAPLE
|
seq(binomial(80, n), n=0..80); # Nathaniel Johnston, Jun 24 2011
|
|
MATHEMATICA
|
Binomial[80, Range[0, 20]] (* Harvey P. Dale, Aug 11 2012 *)
|
|
PROG
|
(Sage) [binomial(80, n) for n in range(16)] # Zerinvary Lajos, May 29 2009
(PARI) vector(80, n, n--; binomial(80, n)) \\ G. C. Greubel, Nov 15 2018
(Magma) [Binomial(80, n): n in [0..80]]; // G. C. Greubel, Nov 15 2018
(GAP) List([0..80], n -> Binomial(80, n)); # G. C. Greubel, Nov 15 2018
|
|
CROSSREFS
|
Cf. A010926-A011001, A017765-A017795, A017797-A017816.
Sequence in context: A154307 A233950 A324071 * A035735 A035805 A017743
Adjacent sequences: A017793 A017794 A017795 * A017797 A017798 A017799
|
|
KEYWORD
|
nonn,fini,full,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|