login
A017789
Binomial coefficients C(73,n).
3
1, 73, 2628, 62196, 1088430, 15020334, 170230452, 1629348612, 13442126049, 97082021465, 621324937376, 3558497368608, 18385569737808, 86270750308176, 369731787035040, 1454278362337824, 5271759063474612, 17675898036356052, 54991682779774384
OFFSET
0,2
COMMENTS
Row 73 of A007318.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..73 (full sequence)
FORMULA
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1+x)^73.
E.g.f.: 1F1(-73; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
MAPLE
seq(binomial(73, n), n=0..73); # Nathaniel Johnston, Jun 24 2011
MATHEMATICA
Binomial[73, Range[0, 73]] (* G. C. Greubel, Nov 15 2018 *)
PROG
(Sage) [binomial(73, n) for n in range(17)] # Zerinvary Lajos, May 28 2005
(PARI) vector(73, n, n--; binomial(73, n)) \\ G. C. Greubel, Nov 15 2018
(Magma) [Binomial(73, n): n in [0..73]]; // G. C. Greubel, Nov 15 2018
(GAP) List([0..73], n -> Binomial(73, n)); # G. C. Greubel, Nov 15 2018
KEYWORD
nonn,fini,full,easy
STATUS
approved