%I #23 Jun 28 2023 21:47:35
%S 1,63,1953,39711,595665,7028847,67945521,553270671,3872894697,
%T 23667689815,127805525001,615790256823,2668424446233,10468434365991,
%U 37387265592825,122131734269895,366395202809685,1012974972473835,2588713818544245,6131164307078475
%N Binomial coefficients C(63,n).
%C Row 63 of A007318.
%H Nathaniel Johnston, <a href="/A017779/b017779.txt">Table of n, a(n) for n = 0..63</a> (full sequence)
%F From _G. C. Greubel_, Nov 14 2018: (Start)
%F G.f.: (1+x)^63.
%F E.g.f.: 1F1(-63; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
%p seq(binomial(63,n), n=0..63); # _Nathaniel Johnston_, Jun 24 2011
%t Binomial[63, Range[0,63]] (* _G. C. Greubel_, Nov 14 2018 *)
%o (Sage) [binomial(63, n) for n in range(18)] # _Zerinvary Lajos_, May 28 2009
%o (PARI) vector(63, n, n--; binomial(63,n)) \\ _G. C. Greubel_, Nov 14 2018
%o (Magma) [Binomial(63,n): n in [0..63]]; // _G. C. Greubel_, Nov 14 2018
%Y Cf. A010926-A011001, A017765-A017778, A017780-A017816.
%K nonn,fini,full,easy
%O 0,2
%A _N. J. A. Sloane_