OFFSET
0,2
COMMENTS
Row 53 of A007318.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..53 (full sequence)
FORMULA
From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^53.
E.g.f.: 1F1(-53; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
MAPLE
seq(binomial(53, n), n=0..53); # Nathaniel Johnston, Jun 24 2011
MATHEMATICA
With[{k = 53}, Array[Binomial[k, #] &, k + 1, 0]] (* Michael De Vlieger, Jul 06 2018 *)
With[{nmax = 53}, CoefficientList[Series[Hypergeometric1F1[-53, 1, -x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 13 2018 *)
PROG
(Sage) [binomial(53, n) for n in range(54)] # Zerinvary Lajos, May 23 2009
(PARI) vector(53, n, n--; binomial(53, n)) \\ G. C. Greubel, Nov 13 2018
(Magma) [Binomial(53, n): n in [0..53]]; // G. C. Greubel, Nov 13 2018
CROSSREFS
KEYWORD
nonn,fini,full,easy
AUTHOR
STATUS
approved