login
A017757
Binomial coefficients C(n,93).
2
1, 94, 4465, 142880, 3464840, 67910864, 1120529256, 16007560800, 202095455100, 2290415157800, 23591276125340, 223044792457760, 1951641934005400, 15913388077274800, 121623751733457400, 875691012480893280, 5965645022526085470, 38601232498698200100
OFFSET
93,2
LINKS
FORMULA
From G. C. Greubel, Nov 12 2018: (Start)
G.f.: x^93/(1-x)^94.
E.g.f.: x^93*exp(x)/93!. (End)
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=93} 1/a(n) = 93/92.
Sum_{n>=93} (-1)^(n+1)/a(n) = A001787(93)*log(2) - A242091(93)/92! = 460513694614161462262474211328*log(2) - 154188882548936228348285592429207553818975770453922184600043633629 / 483042174022506354371285118995346300 = 0.9895789421... (End)
MATHEMATICA
Table[Binomial[n, 93], {n, 93, 120}] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *)
PROG
(Sage) [binomial(n, 93) for n in range(93, 108)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=93, 110, print1(binomial(n, 93), ", ")) \\ G. C. Greubel, Nov 12 2018
(Magma) [Binomial(n, 93): n in [93..110]]; // G. C. Greubel, Nov 12 2018
CROSSREFS
KEYWORD
nonn
STATUS
approved