login
A017751
Binomial coefficients C(n,87).
2
1, 88, 3916, 117480, 2672670, 49177128, 762245484, 10235867928, 121550931645, 1296543270880, 12576469727536, 112044912118048, 924370524973896, 7110542499799200, 51297485177122800, 348822899204435040
OFFSET
87,2
LINKS
FORMULA
From G. C. Greubel, Nov 12 2018: (Start)
G.f.: x^87/(1-x)^88.
E.g.f.: x^87*exp(x)/87!. (End)
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=87} 1/a(n) = 87/86.
Sum_{n>=87} (-1)^(n+1)/a(n) = A001787(87)*log(2) - A242091(87)/86! = 6731298963614255244763987968*log(2) - 13534838706893980718775069557321469163322230965988145004609667 / 2900873187659375626793847091990650 = 0.9888835692... (End)
MATHEMATICA
Binomial[Range[87, 110], 87] (* G. C. Greubel, Nov 12 2018 *)
PROG
(Sage) [binomial(n, 87) for n in range(87, 103)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=87, 110, print1(binomial(n, 87), ", ")) \\ G. C. Greubel, Nov 12 2018
(Magma) [Binomial(n, 87): n in [87..110]]; // G. C. Greubel, Nov 12 2018
CROSSREFS
Sequence in context: A017804 A035739 A035807 * A137057 A197321 A004391
KEYWORD
nonn
STATUS
approved