%I #24 Sep 08 2022 08:44:43
%S 1,87,3828,113564,2555190,46504458,713068356,9473622444,111315063717,
%T 1174992339235,11279926456656,99468442390512,812325612855848,
%U 6186171974825304,44186942677323600,297525414027312240
%N Binomial coefficients C(n,86).
%H Michael De Vlieger, <a href="/A017750/b017750.txt">Table of n, a(n) for n = 86..10000</a>
%F From _G. C. Greubel_, Nov 10 2018: (Start)
%F G.f.: x^86/(1-x)^87.
%F E.g.f.: x^86*exp(x)/86!. (End)
%F From _Amiram Eldar_, Dec 20 2020: (Start)
%F Sum_{n>=86} 1/a(n) = 86/85.
%F Sum_{n>=86} (-1)^n/a(n) = A001787(86)*log(2) - A242091(86)/85! = 3326963855579459488791396352*log(2) - 6767419353446990359387534777193432446042710369441370775542121 / 2934604271236810227105403453525425 = 0.9887585457... (End)
%p seq(binomial(n,86),n=86..102); # _Muniru A Asiru_, Nov 11 2018
%t Array[Binomial[#, 86] &, 16, 86] (* _Michael De Vlieger_, Jul 06 2018 *)
%o (Sage) [binomial(n, 86) for n in range(86,102)] # _Zerinvary Lajos_, May 23 2009
%o (PARI) for(n=86, 105, print1(binomial(n,86), ", ")) \\ _G. C. Greubel_, Nov 10 2018
%o (Magma) [Binomial(n,86): n in [86..105]]; // _G. C. Greubel_, Nov 10 2018
%o (GAP) List([86..102], n->Binomial(n,86)); # _Muniru A Asiru_, Nov 11 2018
%Y Cf. A001787, A242091.
%K nonn
%O 86,2
%A _N. J. A. Sloane_