%I #22 Sep 08 2022 08:44:43
%S 1,81,3321,91881,1929501,32801517,470155077,5843355957,64276915527,
%T 635627275767,5720645481903,47325339895743,362827605867363,
%U 2595612872743443,17427686431277403,110375347398090219
%N Binomial coefficients C(n,80).
%H Michael De Vlieger, <a href="/A017744/b017744.txt">Table of n, a(n) for n = 80..10000</a>
%F From _G. C. Greubel_, Nov 09 2018: (Start)
%F G.f.: x^80/(1-x)^81.
%F E.g.f.: x^80*exp(x)/80!. (End)
%F From _Amiram Eldar_, Dec 18 2020: (Start)
%F Sum_{n>=80} 1/a(n) = 80/79.
%F Sum_{n>=80} (-1)^n/a(n) = A001787(80)*log(2) - A242091(80)/79! = 48357032784585166988247040*log(2) - 3397298872212344557925469166982017642113449232981882085888 / 101355810171231196598821163455095 = 0.9879450412... (End)
%t Array[Binomial[#, 80] &, 16, 80] (* _Michael De Vlieger_, Jul 06 2018 *)
%o (Sage) [binomial(n, 80) for n in range(80,96)] # _Zerinvary Lajos_, May 23 2009
%o (PARI) for(n=80, 100, print1(binomial(n,80), ", ")) \\ _G. C. Greubel_, Nov 09 2018
%o (Magma) [Binomial(n,80): n in [80..100]]; // _G. C. Greubel_, Nov 09 2018
%Y Cf. A001787, A242091.
%K nonn
%O 80,2
%A _N. J. A. Sloane_