%I #25 Sep 08 2022 08:44:43
%S 1,79,3160,85320,1749060,29034396,406481544,4935847320,53060358690,
%T 512916800670,4513667845896,36519676207704,273897571557780,
%U 1917283000904460,12599288291657880,78115587408278856
%N Binomial coefficients C(n,78).
%H Robert Israel, <a href="/A017742/b017742.txt">Table of n, a(n) for n = 78..10000</a>
%F G.f.: x^78/(1-x)^79. - _Robert Israel_, Jul 06 2018
%F E.g.f.: x^78*exp(x)/78!. - _G. C. Greubel_, Nov 09 2018
%F From _Amiram Eldar_, Dec 18 2020: (Start)
%F Sum_{n>=78} 1/a(n) = 78/77.
%F Sum_{n>=78} (-1)^n/a(n) = A001787(78)*log(2) - A242091(78)/77! = 11787026741242634453385216*log(2) - 1343868224767541359938872174222258043753394785150282521 / 164485248573890289839047652475 = 0.9876470468... (End)
%p seq(binomial(n,78),n=78..100); # _Robert Israel_, Jul 06 2018
%t Binomial[Range[78,98],78] (* _Harvey P. Dale_, Sep 18 2016 *)
%o (Sage) [binomial(n, 78) for n in range(78,94)] # _Zerinvary Lajos_, May 23 2009
%o (PARI) for(n=78, 100, print1(binomial(n,78), ", ")) \\ _G. C. Greubel_, Nov 09 2018
%o (Magma) [Binomial(n,78): n in [78..100]]; // _G. C. Greubel_, Nov 09 2018
%Y Cf. A001787, A242091.
%K nonn
%O 78,2
%A _N. J. A. Sloane_