login
A017741
Binomial coefficients C(n,77).
2
1, 78, 3081, 82160, 1663740, 27285336, 377447148, 4529365776, 48124511370, 459856441980, 4000751045226, 32006008361808, 237377895350076, 1643385429346680, 10682005290753420, 65516299116620976, 380813488615359423, 2105674584108457986, 11113282527239083815
OFFSET
77,2
LINKS
FORMULA
From G. C. Greubel, Nov 09 2018: (Start)
G.f.: x^77/(1-x)^78.
E.g.f.: x^77*exp(x)/77!. (End)
From Amiram Eldar, Dec 18 2020: (Start)
Sum_{n>=77} 1/a(n) = 77/76.
Sum_{n>=77} (-1)^(n+1)/a(n) = A001787(77)*log(2) - A242091(77)/76! = 5817955506895402903273472*log(2) - 1343868224767541359938872007600837410461932350790322871 / 333242841266582924868719919300 = 0.9874924526... (End)
MATHEMATICA
Binomial[Range[77, 100], 77] (* Alonso del Arte, Nov 29 2017 *)
PROG
(Sage) [binomial(n, 77) for n in range(77, 93)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=77, 95, print1(binomial(n, 77), ", ")) \\ G. C. Greubel, Nov 09 2018
(Magma) [Binomial(n, 77): n in [77..95]]; // G. C. Greubel, Nov 09 2018
CROSSREFS
Sequence in context: A146479 A017794 A035734 * A060562 A004367 A194568
KEYWORD
nonn,easy
STATUS
approved