login
Binomial coefficients C(n,76).
2

%I #22 Sep 08 2022 08:44:43

%S 1,77,3003,79079,1581580,25621596,350161812,4151918628,43595145594,

%T 411731930610,3540894603246,28005257316582,205371886988268,

%U 1406007533996604,9038619861406740,54834293825867556

%N Binomial coefficients C(n,76).

%H Michael De Vlieger, <a href="/A017740/b017740.txt">Table of n, a(n) for n = 76..10000</a>

%F From _G. C. Greubel_, Nov 09 2018: (Start)

%F G.f.: x^76/(1-x)^77.

%F E.g.f.: x^76*exp(x)/76!. (End)

%F From _Amiram Eldar_, Dec 18 2020: (Start)

%F Sum_{n>=76} 1/a(n) = 76/75.

%F Sum_{n>=76} (-1)^n/a(n) = A001787(76)*log(2) - A242091(76)/75! = 2871198821584744289927168*log(2) - 671934112383770679969435834986610958343563445846254948 / 337627615493774805459097812975 = 0.9873339376... (End)

%t Array[Binomial[#, 76] &, 16, 76] (* _Michael De Vlieger_, Jul 06 2018 *)

%o (Sage) [binomial(n, 76) for n in range(76,92)] # _Zerinvary Lajos_, May 23 2009

%o (PARI) for(n=76, 95, print1(binomial(n,76), ", ")) \\ _G. C. Greubel_, Nov 09 2018

%o (Magma) [Binomial(n,76): n in [76..95]]; // _G. C. Greubel_, Nov 09 2018

%Y Cf. A001787, A242091.

%K nonn

%O 76,2

%A _N. J. A. Sloane_